skip to main content


Search for: All records

Creators/Authors contains: "Fraser, William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 15, 2024
  2. abstract

    The marine coastal region makes up just 10% of the total area of the global ocean but contributes nearly 20% of its total primary production and over 80% of fisheries landings. Unicellular phytoplankton dominate primary production. Climate variability has had impacts on various marine ecosystems, but most sites are just approaching the age at which ecological responses to longer term, unidirectional climate trends might be distinguished. All five marine pelagic sites in the US Long Term Ecological Research (LTER) network are experiencing warming trends in surface air temperature. The marine physical system is responding at all sites with increasing mixed layer temperatures and decreasing depth and with declining sea ice cover at the two polar sites. Their ecological responses are more varied. Some sites show multiple population or ecosystem changes, whereas, at others, changes have not been detected, either because more time is needed or because they are not being measured.

     
    more » « less
  3. We evaluated annual and regional variation in the dietary niche of Pygoscelis penguins including the sea ice-obligate Adélie penguin ( Pygoscelis adeliae ), and sea ice-intolerant chinstrap ( Pygoscelis antarcticus ) and gentoo ( Pygoscelis papua ) penguins, three species that nest throughout the western Antarctic Peninsula (AP) to test the sea ice trophic interaction hypothesis , which posits that penguin breeding populations with divergent trends, i.e., declining or increasing, are reliant on differing food webs. Our study relies on values of naturally occurring carbon ( 13 C/ 12 C, δ 13 C) and nitrogen ( 15 N/ 14 N, δ 15 N) stable isotopes as integrated proxies of penguin food webs measured over three years at three different breeding colonies. At Anvers Island in the north, where reductions in sea ice and changes in breeding population trends among sympatric sea ice-obligate (Adélie) and sea ice-intolerant (chinstrap and gentoo) penguins have been most notable, our analyses show that all three species of Pygoscelis penguins became more similar isotopically over the reproductive period. By late chick-rearing at Anvers Island, crèched chicks at 5-weeks-old for all species occupied similar trophic positions. Isotopic mixing models indicated that the proportions of prey provisioned by adult penguins to 5-week-old chicks at Anvers Island were generally similar across species within years, consisting primarily of Antarctic krill ( Euphausia superba ). Crèched Adélie chicks had higher δ 13 C and δ 15 N values at Avian and Charcot Islands, southern breeding colonies where sea ice is more prominent and populations of Adélie penguins have increased or remain stable. Trophic position increased with latitude, while the proportions of prey provisioned by Adélie penguin adults to chicks at southern breeding colonies included species typical of high Antarctic marine food webs, especially crystal krill ( Euphausia crystallorophias ). A Bayesian metric for dietary niche width, standard ellipse area (SEA-B), indicated that Pygoscelis penguins with greater population changes in the north had more variability in dietary niche width than stable populations further south. Our results lend insight on marine food web drivers of Pygoscelis penguin reproduction at the regional scale and question the long-standing paradigm that Antarctic krill are the only food web component critical to penguin reproductive survival in this region of the Southern Ocean. 
    more » « less
  4. Foraging strategies in gentoo penguins ( Pygoscelis papua ) have been well studied (e.g. Croxall et al. 1988, Robinson & Hindell 1996, Lescroël et al. 2004, Takahashi et al. 2008, Xavier et al. 2017). The general consensus is this largest member of the three pygoscelid penguins displays both nearshore benthic and pelagic foraging tactics to consume combinations of crustaceans and fish. In a recent study, Carpenter-Kling et al. (2017) reported that gentoos at sub-Antarctic Marion Island displayed a novel foraging strategy that consisted of alternating typical lengthy foraging trips with much shorter nearshore afternoon trips. They suggest the latter foraging behaviour may be a response to suboptimal feeding conditions caused by local environmental change. This novel discovery reinforces the fact that, despite considerable study, not all foraging tactics in penguins have been documented. In this paper, we describe what we believe to be, yet another undocumented foraging tactic employed by gentoos. 
    more » « less
  5. Abstract

    Discovering the predictors of foraging locations can be challenging, and is often the critical missing piece for interpreting the ecological significance of observed movement patterns of predators. This is especially true in dynamic coastal marine systems, where planktonic food resources are diffuse and must be either physically or biologically concentrated to support upper trophic levels. In the Western Antarctic Peninsula, recent climate change has created new foraging sympatry between Adélie (Pygoscelis adeliae) and gentoo (P. papua) penguins in a known biological hotspot near Palmer Deep canyon. We used this recent sympatry as an opportunity to investigate how dynamic local oceanographic features affect aspects of the foraging ecology of these two species. Simulated particle trajectories from measured surface currents were used to investigate the co-occurrence of convergent ocean features and penguin foraging locations. Adélie penguin diving activity was restricted to the upper mixed layer, while gentoo penguins often foraged much deeper than the mixed layer, suggesting that Adélie penguins may be more responsive to dynamic surface convergent features compared to gentoo penguins. We found that, despite large differences in diving and foraging behavior, both shallow-diving Adélie and deeper-diving gentoo penguins strongly selected for surface convergent features. Furthermore, there was no difference in selectivity for shallow- versus deep-diving gentoo penguins. Our results suggest that these two mesopredators are selecting surface convergent features, however, how these surface signals are related to subsurface prey fields is unknown.

     
    more » « less
  6. Abstract

    Despite many studies on Adélie penguin breeding phenology, understanding the drivers of clutch initiation dates (CIDs, egg 1 lay date) is limited or lacks consensus. Here, we investigated Adélie penguin CIDs over 25 years (1991–2016) on two neighboring islands, Torgersen and Humble (<1 km apart), in a rapidly warming region near Palmer Station, Antarctica. We found that sea ice was the primary large‐scale driver of CIDs and precipitation was a secondary small‐scale driver that fine‐tunes CID to island‐specific nesting habitat geomorphology. In general, CIDs were earlier (later) when the spring sea ice retreat was earlier (later) and when the preceding annual ice season was shorter (longer). Island‐specific effects related to precipitation and island geomorphology caused greater snow accumulation and delayed CIDs by ~2 days on Torgersen compared to Humble Island. When CIDs on the islands were similar, conditions were mild with less snow across breeding sites. At Torgersen Island, the negative relationship between CID and breeding success highlights detrimental effects of delayed breeding and/or snow on penguin fitness. Past phenological studies reported a relationship between air temperature and CID, assumed to be related to precipitation, but we found air temperature was more highly correlated to sea ice, revealing a misinterpretation of temperature effects. Finally, contrasting trends in CIDs based on temporal shifts in regional sea ice patterns revealed trends toward earlier CIDs (4–6 day advance) from 1979 to 2009 as the annual ice season shortened, and later CIDs (7–10 day delay) from 2010 to 2016 as the annual ice season lengthened. Adélie penguins tracked environmental conditions with flexible breeding phenology, but their life history remains vulnerable to subpolar weather conditions that can delay CIDs and decrease breeding success, especially on landscapes where geomorphology facilitates snow accumulation.

     
    more » « less
  7. Abstract

    Climate change is leading to phenological shifts across a wide range of species globally. Polar oceans are hotspots of rapid climate change where sea ice dynamics structure ecosystems and organismal life cycles are attuned to ice seasonality. To anticipate climate change impacts on populations and ecosystem services, it is critical to understand ecosystem phenology to determine species activity patterns, optimal environmental windows for processes like reproduction, and the ramifications of ecological mismatches. Since 1991, the Palmer Antarctica Long‐Term Ecological Research (LTER) program has monitored seasonal dynamics near Palmer Station. Here, we review the species that occupy this region as year‐round residents, seasonal breeders, or periodic visitors. We show that sea ice retreat and increasing photoperiod in the spring trigger a sequence of events from mid‐November to mid‐February, including Adélie penguin clutch initiation, snow melt, calm conditions (low winds and warm air/sea temperature), phytoplankton blooms, shallow mixed layer depths, particulate organic carbon flux, peak humpback whale abundances, nutrient drawdown, and bacterial accumulation. Subsequently, from May to June, snow accumulates, zooplankton indicator species appear, and sea ice advances. The standard deviation in the timing of most events ranged from ~20 to 45 days, which was striking compared with Adélie penguin clutch initiation that varied <1 week. In general, during late sea ice retreat years, events happened later (~5 to >30 days) than mean dates and the variability in timing was low (<20%) compared with early ice retreat years. Statistical models showed the timing of some events were informative predictors (but not sole drivers) of other events. From an Adélie penguin perspective, earlier sea ice retreat and shifts in the timing of suitable conditions or prey characteristics could lead to mismatches, or asynchronies, that ultimately influence chick survival via their mass at fledging. However, more work is needed to understand how phenological shifts affect chick thermoregulatory costs and the abundance, availability, and energy content of key prey species, which support chick growth and survival. While we did not detect many long‐term phenological trends, we expect that when sea ice trends become significant within our LTER time series, phenological trends and negative effects from ecological mismatches will follow.

     
    more » « less
  8. Abstract

    The Palmer Deep canyon along the West Antarctic Peninsula is a biological hotspot with abundant phytoplankton and krill supporting Adélie and gentoo penguin rookeries at the canyon head. Nearshore studies have focused on physical mechanisms driving primary production and penguin foraging, but less is known about finer‐scale krill distribution and density. We designed two acoustic survey grids paired with conductivity–temperature–depth profiles within adjacent Adélie and gentoo penguin foraging regions near Palmer Station, Antarctica. The grids were sampled from January to March 2019 to assess variability in krill availability and associations with oceanographic properties. Krill density was similar in the two regions, but krill swarms were longer and larger in the gentoo foraging region, which was also less stratified and had lower chlorophyll concentrations. In the inshore zone near penguin colonies, depth‐integrated krill density increased from summer to autumn (January–March) independent of chlorophyll concentration, suggesting a life history‐driven adult krill migration rather than a resource‐driven biomass increase. The daytime depth of krill biomass deepened through the summer and became decoupled from the chlorophyll maximum in March as diel vertical migration magnitude likely increased. Penguins near Palmer Station did not appear to be limited by krill availability during our study, and regional differences in krill depth match the foraging behaviors of the two penguin species. Understanding fine‐scale physical forcing and ecological interactions in coastal Antarctic hotspots is critical for predicting how environmental change will impact these ecosystems.

     
    more » « less
  9. Abstract

    Ecosystems across the United States are changing in complex and unpredictable ways and analysis of these changes requires coordinated, long‐term research. This paper is a product of a synthesis effort of the U.S. National Science Foundation funded Long‐Term Ecological Research (LTER) network addressing the LTER core research area of “populations and communities.” This analysis revealed that each LTER site had at least one compelling “story” about what their site would look like in 50–100 yr. As the stories were prepared, themes emerged, and the stories were group into papers along five themes: state change, connectivity, resilience, time lags, and cascading effects. This paper addresses the cascading effects theme and includes stories from the Bonanza Creek (boreal), Kellogg Biological Station (agricultural and freshwater), Palmer (Antarctica), and Harvard Forest (temperate forest) LTER sites. We define cascading effects very broadly to include a wide array of unforeseen chains of events that result from a variety of actions or changes in a system. While climate change is having important direct effects on boreal forests, indirect effects mediated by fire activity—severity, size, and return interval—have large cascading effects over the long term. In northeastern temperate forests, legacies of human management and disturbance affect the composition of current forests, which creates a cascade of effects that interact with the climate‐facilitated invasion of an exotic pest. In Antarctica, declining sea ice creates a cascade of effects including declines in Adèlie and increases in Gentoo penguins, changes in phytoplankton, and consequent changes in zooplankton populations. An invasion of an exotic species of lady beetle is likely to have important future effects on pest control and conservation of native species in agricultural landscapes. New studies of zebra mussels, a well‐studied invader, have established links between climate, the heat tolerance of the mussels, and harmful algal blooms. Collectively, these stories highlight the need for long‐term studies to sort out the complexities of different types of ecological cascades. The diversity of sites within the LTER network facilitates the emergence of overarching concepts about trophic interactions as an important driver of ecosystem structure, function, services, and futures.

     
    more » « less